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Abstract—Approximate solutions of heat transfer in plate heat exchangers are obtained using exponential
approximations for the temperature in each stream. Numerical results obtained by the method presented
have been compared with the exact analytical solutions. About 300 cases have been analysed.

INTRODUCTION

A MATHEMATICAL model of heat transfer in multi-
channel, parallel-flow heat exchangers is defined by
the system of linear ordinary differential equations
with constant coefficients. Several authors have given
the exact analytical solutions for selected cases [1-6].
Exact analytical solutions are possible if the eigen-
values and eigenvectors for the matrix of the system
are known. It is not easy to find these values, especially
for a high order of matrix characteristic polynomial.
Therefore, approximate methods are needed to avoid
these difficulties.

Settari and Venart [7] have presented a general
numerical method which is an integral procedure
using polynomial approximations of degree m for the
temperatures in each channel of the exchanger. It
proved very useful in calculating the heat transfer in
exchangers with different arrangements of the inter-
connections between individual channels and for
different boundary conditions.

A single third degree polynomial gave good results
compared with the exact solutions obtained by Men-
nicke [2, 3]. Settari and Venart have presented the
results of calculations for plate heat exchangers with
n channels (n = 4 and 10), and for NTU, = 0.2-0.8
and C,/C,. = 0.3-5. NTU, is the number of transfer
units for a single channel and C,/C, the ratio of stream
capacity rates in the exchanger.

Using Settari and Venart’s method, we carried out
a number of calculations for plate heat exchangers.
The results for different interconnections and selected
configurations described by the boundary conditions
were compared with the exact analytical solutions. A
wide range of parameters was analysed: NTU, =
0.05-20, C,/C. = 0.5-10 and n = 4, 8, 12, 16, 20, 24.

Settari and Venart’s approximate method proved
to be very useful in predicting the temperature in plate
heat exchangers when the values of NTU, calculated
for a single channel were not too large (NTU, =
0.05-1); if, however, they exceeded 10, the method

led to unacceptable errors, particularly for a small
number of channels. To avoid these errors a modifi-
cation of Settari and Venart’s method is proposed.

Instead of polynomial approximations for the pre-
diction of temperatures in each channel, we suggest
a linear combination of exponential functions. The
results do not differ from the exact analytical solutions
over a wide range of parameters: NTU, = 0.05-20,
C/C. = 0.1-10, n = 4-40. Altogether, some 300 cases
have been analysed.

AN APPROXIMATE METHOD OF SOLUTION
FOR PLATE HEAT EXCHANGERS

A mathematical model of heat transfer in multi-
channel, parallel-flow heat exchangers is defined by
the system of linear ordinary differential equations

[4]:
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Dimensionless coordinate z is the ratio of linear coor-
dinate x (length) to the length L of the exchanger. In
a plate heat exchanger L is the length of a single
channel. Equations (1) are linear if the usual assump-
tions are made [4]. Exact analytical solutions are
known for several types of exchangers [1-5].

Settari and Venart [7] have presented an approxi-
mate method. Following the idea of the integral
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heat exchanger, heat transfer coefficient
between media i and j [Wm *K ']

L length of heat exchanger or length of
channel in plate heat exchanger [m)

m degree of polynomial (formula (5))
{dimensionless]

n total number of channels

NTU number of heat transfer units for the

entire heat exchanger, k- F/C
[dimensionless]

number of transfer units in single
channel, k- F,/C, [dimensionless)]
P temperature effectiveness of cold fluid
(formula (10)) [dimensionless]
temperature [K]
coordinate (length in the x-direction)
dimensionless coordinate, x/L.

NTU,

~

o

NOMENCLATURE
C flow stream heat capacity rate {W K1 Greek symbols
¢ coefficient in polynomial and exponential % coefficient in exponential approximation
approximation (formulae (5) and (9)) (formula (9)) [dimensionless]
[dimensionless] (0] dimensionless temperature (formula (4))
F, F,; surface area of the entire exchanger, A®,, dimensionless mean temperature
surface area of heat transfer between difference
media i and j [m?] A®,, dimensionless log-mean temperature
F, surface area of one plate [m?) difference
k. k; overall heat transfer coefficient in plate ¢ effectiveness of exchanger

[dimensionless] ; ¢, = @y — Oy o
refers to hot fluid

v log-mean temperature difference
correction factor (formula (11))
[dimensionless].

Subscripts

c cold

h hot

iJj channels 7, j

n inlet

{ nodal points for approximating function

min  minimum

max maximum

out  outlet

u, v  integration limits

0 single channel or one plate.

method an approximate solution to @, is assumed to
be a polynomial of degree m:

m

®,= Y ¢ (5)
i=0
The coefficients of this polynomial ¢, are determined
by (m+1) values of ©Y for i=12,...,n
j=0.1,....m:

m
950) = 0,(zo) = Z Ci/Z[()
=0

G):('” =0,(z) = Z Cuzll
=0

O = 0,(z,) = Y, Culm- (6)
=0

It is assumed that
O=zo<z;<z,<*"<z,=1
Substitution of the function (5) into the ith equation

of (1) gives
0(z,)—0,(z) = — Z ([.' aij(®i_®j) dZ)

i=12,...,n (7
Integrating (7) for different combinations of chosen

values of z,, 24, ..., z,, as the integration limits z, and
z, we obtain m X n linear algebraic equations.

The remaining »n equations are found from the
boundary conditions. Having (m+ 1) x n such equa-
tions, it is possible to find all the coefficients ¢,
in (6) and, consequently, the temperatures @ (for
i=1,2,...,n;j=0,1,...,m).

As has been mentioned earlier, Settari and Venart’s
method yields accurate results when the value of
NT U, calculated for a single channel is not too large ;
otherwise (NTU, of the order of 10 or more) the
method leads to high errors, especially for small num-
bers of channels.

A modification of this method is thus presented
using a linear combination of exponential functions
for the temperatures in each channel instead of poly-
nomial approximations. Such a function for a two-
medium, plate heat exchanger has the following form:

O, =c¢o+c¢exp(az)+enexp(—a,z)
+ ¢y exp (oaz) + g exp (—2a2)
fori=1,2,....n (8)
where
oy = kFy/Chy+kFy/Ceo
oy = kFo/Cho—kFo/Cep-

The values of «, and «, refer to a single channel, k is



Approximate solutions of heat transfer in plate heat exchangers 1127
Table 1, Comparison of results of calculations ® and ¢, for plate heat exchangers (Fig. 1(c))
Maximum error
of ® Error of ¢, (%)
Settari and Settari and Number
Venart Exponential Venart Exponential of
kFIC, kF[Cyy  kFC, GCifC. method method method method channels

0.5 0.333 0.167 0.5 0.0001 0.0000 0.0054 0.0001 4
0.333 1 0.0002 0.0000 0.0154 0.0001
0.667 2 0.0013 0.0000 0.0647 0.0023
1.667 5 0.0138 0.0011 0.6531 0.0563
2 1.333 0.667 0.5 0.0103 0.0008 0.6459 —0.0570
1.333 1 0.0148 0.0014 1.5490 0.1883
2.667 2 0.0484 0.0080 4.6070 -0.7744
6.667 5 0.2159 0.0526 17.5000 —3.5364
5 3333 1.667 0.5 0.0746 0.0155 7.6620 —1.4890
3.333 1 0.0926 0.0220 13.3948 —3.1633
6.667 2 0.2280 0.0649 24.0853 —6.1000
16.667 5 — 0.1204 — —8.7558

0.5 0.286 0.143 0.5 0.0000 0.0000 0.0046 0.0000 8
0.286 1 0.0002 0.0000 0.1283 —0.0003
0.571 2 0.0010 0.0000 0.0545 —-0.0018
1.429 5 0.0099 0.0008 0.5597 —0.0474
2 1.143 0.571 0.5 0.0080 0.0007 0.5578 —0.0505
1.143 i 0.0125 0.0014 1.3641 —0.1747
2.286 2 0.03%4 0.0068 4.2147 —0.7535
5.714 5 0.1763 0.0444 17.3227 —4.0249
5 2.857 1.429 0.5 0.0590 0.0135 7.1824 —1.5028
2.857 1 0.079%0 0.0221 12.9173 —3.3158
5.714 2 0.1941 0.0601 24,1662 —6.9171
14.286 5 e 0.1198 — —10.9508

0.5 0.263 0.132 0.5 0.0000 0.0000 0.0040 0.0001 20
0.263 i 0.000t 0.0000 0.0112 0.0001
0.526 2 0.0007 0.0000 0.0472 -0.0016
1.319 5 0.0079 0.0006 0.4965 ~0.0400
2 1.053 0.526 0.5 0.0063 0.0005 0.4961 —0.0431
1.053 1 0.0102 0.0011 1.2313 —0.1542
2.105 2 0.0337 0.0052 3.9137 —0.6940
5.263 5 0.1549 0.0379 17.0475 —4.0972
5 2.632 1.316 0.5 0.0503 0.0106 6.7856 —1.4223
2.632 1 0.0678 0.0182 12.4359 —3.2388
5.263 0.1745 0.0529 23.8950 —7.1258
13.158 5 -— 0.1151 —— —12.3391

—, the function exceeds the range of dimensionless temperature.

the overall heat transfer coefficient assumed constant
in each channel as well as over the whole exchanger,
F, represents the surface area of one plate, and C,,
and C., are the heat capacities of the hot and cold
medium in a single channel.

Following Settari and Venart, the coefficients of
equations (8) are calculated by substituting (8) into
the ith equation of (7). Integrating (7) for four dif-
ferent combinations of the values of 0 =z, <z, <
z,<zy<zy,=1 as the integration limits we ob-
tain 4n linear algebraic equations. In our equations
20=0,2, =14, 2,= 13, z;=1, z, = 1. The missing n
equations are provided by the boundary conditions.

Having 5# such equations we can find all unknown
coefficients in (8), and hence all unknown tem-
peratures in the exchanger.

For kF,/Co = kF,/C.s, we usc the function (9)
instead of (8)

®, = Ciotciy €Xp (42) + iy exp (—a2) +caz (9)
where
a = kFy/Cpo+kFy/Ceo.

The number of unknown coefficients is 4n. A total of
3n equations may be obtained upon the substitution
of (9) into (7). The remaining » equations are again
found from the boundary conditions.

The method proposed has been termed ‘exponen-
tial’. The form of the function (8) or (9) resuits from a
particular structure of the flow in the plate exchangers
(both co-current and countercurrent flow). The
coefficients «,, o, or « are the eigenvalues of a system
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of differential equations. This system is the math-
ematical model of an exchanger formed by two ad-
jacent channels in a plate exchanger.

COMPARISON AND ANALYSIS OF THE
RESULTS

Calculations of the temperature distribution and
thermal effectiveness have been carried out for a plate
heat exchanger with a configuration of flow as in Fig.
1. For such interconnections between the channels we
may obtain exact analytical solutions (with eigen-
values taken from the literature [4]). A wide range of
parameters (NTU, = 0.05-20 in a single channel,
ratio of total heat capacity rates C,,/C, = 0.2-5, num-
ber of channels n = 4, 8, 16, 20, 24) has been inves-
tigated. Temperature distribution and thermal effec-
tiveness of the hot fluid are calculated analytically
and by means of approximate methods (Settari and
Venart’s and exponential). Maximum error and mean
squarc error of the temperature distribution are deter-
mined for each variant. Also, the relative error con-
cerning the thermal effectiveness is calculated.

It has been found that for low values of NTU,in a
single channel (0.05-1) the two approximate methods
arc sufficiently accurate. The error concerning thermal
effectiveness was less than 0.6% for Settari and
Venart; for the exponential method it did not exceed
0.06%. However, for exchangers with high values of
NTU, and low number of channels, Settari and Ven-
arl’s method leads to unacceptable errors above 25%
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FiG. 1. Scheme of flow arrangements in a plate heat ex-
changer.
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as concerns relative thermal effectiveness, compared
with the analytical values. In several cases this method
could not be used at all. For all these cases the error
of the exponential method did not exceed 13%. The
temperature distribution in individual channels of a
plate heat exchanger is shown in Figs. 2 and 3.

A variant has been chosen which leads to large
discrepancies between the analytical solution and the
two approximale solutions. Table 1 presents
maximum errors in the temperature distribution and
relative errors concerning the effectiveness of the hot
medium, ¢,, for the exchanger shown in Fig. 1(c).
All errors are calculated relative to the values found
analytically for selected parameters.

To test the approximate exponential method cal-
culations of plate exchangers have been carried out
for about 300 cases. Flow arrangements and inter-
connections between channels were determined by :

e number of passes of both fluids;
e number of channels in one pass;
e boundary conditions.

The results have been compared with those presented
by Kandlikar and Shah [8] for various inter-
connections between the channels (described by the
number of passes) and for various configurations of
the exchangers. A wide range of NTU, C,/C, and #
has been studied.

To calculate the temperature distribution, Kand-
likar and Shah divided each channel into 100
sections. With difference equations written for each
section in individual channels they solved simul-
taneously a system of equations using the Gauss-
Seidel iterative finite difference method. The total
number of iterations varied from 15 to 50 depending
on the arrangement of passes and the total number of
plates. The thermal effectiveness was obtained with
an accuracy of about 0.0001. It may be noted that the
exponential method presented in this paper requires
only the solution of 5n linear algebraic equations
(where n is the total number of channels). The results

az
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F1G. 2. Comparison of temperature profiles in plate exchanger (kFo/Cho = 1.3333,kF,/Cen = @.6667, n=4,
flow as in Fig. 1(c)). (a) Channel 1. (b) Channel 3. (—-) Exact solution; (----) Settari and Venart
method ; (— x - x —) exponential method.
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Fi1G. 3. Comparison of temperature profiles in plate exchanger (kFy/C,, o = 1.3333,kFy/C.p = 6.6667,n = 4,
flow as in Fig. 1(c)). (a) Channet 2. (b) Channel 4. (—) Exact solution; (----) Settari and Venart
method ; (- x - x -) exponential method.

obtained using the exponential method agree sur-
prisingly well with those of Kandlikar and Shah [§].

The outlet temperatures of the cold fluid in each
variant were compared as

Tc.ou! - Tc,in

p, = oow “ein
¢ Th.in - Tc,in

= A@.. 10)
In all cases, the error was less than 0.0001 for the
given range of thermal parameters. The log-mean tem-
perature difference correction factors iy were also

compared

A®,,
A®ln '

Y= (1
In the above formula A®,, is the dimensionless mean
temperature difference, and A®,, the dimensionless
log-mean temperature difference.

CONCLUSIONS

A method of calculating the temperature dis-
tribution and thermal efficiency in plate exchangers
has been proposed, based on an approximation of the
temperature of a medium in individual channels by
means of linear exponential functions (equations (8)
and (9)). The method leads to correct results over a
wide range of thermal parameters and for various
interconnections of the channels in the exchanger.

An advantage of the exponential method lies in the
fact that in order to obtain highly accurate results it
is sufficient to use a personal computer of the IBM
PC type. It also seems that the method proposed may
be successfully applied to other types of multichannel,
parallel-flow heat exchangers.
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METHODE APPROCHEE POUR RESOUDRE LES EQUATIONS RELATIVES AUX
ECHANGEURS THERMIQUES A PLAQUES

Résumé—Des solutions approchées de transfert thermique dans les échangeurs a plaques sont obtenues en

utilisant des approximations exponentielles pour les températures dans chaque écoulement. Des résultats

numeriques obtenus par la méthode présentée ont été comparés avec les solutions analytiques exactes.
Environ 300 cas ont été analysés.
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NAHERUNGSVERFAHREN ZUR I:OSUNG DER GLEICHUNGEN FUR EINEN
PLATTENWARMEAUSTAUSCHER

Zusammenfassung—Mit Hilfe eines exponentiellen Naherungsverfahrens fiir die Temperaturberechnung
in beiden Massenstromen eines Plattenwidrmeaustauschers konnte eine Naherungslésung fir den
Wairmeaustausch gefunden werden. Die mit diesem Verfahren numerisch berechneten Ergebnisse werden
mit exakten analytischen Losungen verglichen. Ungefihr 300 verschiedene Fille werden dabei analysiert.

MPUBJIWKEHHBIA METO/I PEHIEHUSI YPABHEHUI JJ151 TUNTACTUHYATBIX
TEINJIOOBMEHHHUKOB

Asporamms—C HCIOJB30BAHHEM IKCIOHEHUMAIBHBIX NPHOIMKEHHA A1 TEMIEpaTyp B MOTOKE MOJy-

4eHBl MPHOIMKEHHbIE PEIICHHS 3a4a4 TEIUIONEpeHOCa B IUIACTHHYATHIX TermiooOMeHHMKax. IposeneHo

CpPaBHEHHE YHCJECHHBIX DPE3yJIbTATOB C TOYHBIMH AHAJMTHYECKHMH peuieHusmu. IIpoananusnpoBaHo
okoJio 300 cryuaes.



