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Abstract-Approximate solutions of heat transfer in plate heat exchangers are obtained using exponential 
approximations for the temperature in each stream. Numerical results obtained by the method presented 

have been compared with the exact analytical solutions. About 300 cases have been analysed. 

INTRODUCTION 

A MATHEMATICAL model of heat transfer in multi- 

channel, parallel-flow heat exchangers is defined by 
the system of linear ordinary differential equations 

with constant coefficients. Several authors have given 
the exact analytical solutions for selected cases [l-6]. 
Exact analytical solutions are possible if the eigen- 

values and eigenvectors for the matrix of the system 
are known. It is not easy to find these values, especially 
for a high order of matrix characteristic polynomial. 
Therefore, approximate methods are needed to avoid 

these difficulties. 
Settari and Venart [7] have presented a general 

numerical method which is an integral procedure 
using polynomial approximations of degree m for the 

temperatures in each channel of the exchanger. It 
proved very useful in calculating the heat transfer in 
exchangers with different arrangements of the inter- 

connections between individual channels and for 

different boundary conditions. 
A single third degree polynomial gave good results 

compared with the exact solutions obtained by Men- 

nicke [2, 31. Settari and Venart have presented the 
results of calculations for plate heat exchangers with 
n channels (n = 4 and lo), and for NTU, = 0.24.8 
and C,,/C, = 0.3-5. NTU, is the number of transfer 

units for a single channel and CJC, the ratio of stream 
capacity rates in the exchanger. 

Using Settari and Venart’s method, we carried out 

a number of calculations for plate heat exchangers. 
The results for different interconnections and selected 
configurations described by the boundary conditions 

were compared with the exact analytical solutions. A 
wide range of parameters was analysed: NTUo = 
0.05-20, CJC, = 0.5-10 and n = 4, 8, 12, 16, 20, 24. 

Settari and Venart’s approximate method proved 

to be very useful in predicting the temperature in plate 
heat exchangers when the values of NTU, calculated 
for a single channel were not too large (NTU, = 
0.05-I); if, however, they exceeded 10. the method 

led to unacceptable errors, particularly for a small 

number of channels. To avoid these errors a modifi- 
cation of Settari and Venart’s method is proposed. 

Instead of polynomial approximations for the pre- 

diction of temperatures in each channel, we suggest 
a linear combination of exponential functions. The 
results do not differ from the exact analytical solutions 

over a wide range of parameters: NTUo = 0.05-20, 
C,,/C, = 0.1-10, n = 440. Altogether, some 300 cases 
have been analysed. 

AN APPROXIMATE METHOD OF SOLUTION 

FOR PLATE HEAT EXCHANGERS 

A mathematical model of heat transfer in multi- 

channel, parallel-flow heat exchangers is defined by 

the system of linear ordinary differential equations 

141 : 

da, * 
d=+ 1 a,,(@,-0,) =0 fori= 1,2 ,__., II (1) 

,= I 

where 

and 

0, - tl - tm,n 
tin,, - t,,, 

(4) 

Dimensionless coordinate z is the ratio of linear coor- 
dinate x (length) to the length L of the exchanger. In 
a plate heat exchanger L is the length of a single 
channel. Equations (1) are linear if the usual assump- 
tions are made [4]. Exact analytical solutions are 
known for several types of exchangers [l-5]. 

Settari and Venart [7] have presented an approxi- 
mate method. Following the idea of the integral 
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NOMENCLATURE 

C flow stream heat capacity rate [W K ‘1 Greek symbols 

C coefficient in polynomial and exponential z coefficient in exponential approximation 

approximation (formulae (5) and (9)) (formula (9)) [dimensionless] 

[dimensionless] 0 dimensionless temperature (formula (4)) 

F, F,, surface area of the entire exchanger, WI, dimensionless mean temperature 

surface area of heat transfer between difference 

media i and j [m’] A@,” dimensionless log-mean temperature 

F,, surface area of one plate [m’] difference 

k, k,, overall heat transfer coefficient in plate (b effectiveness of exchanger 

heat exchanger, heat transfer coefficient [dimensionless] ; &, = Oh,,” - Oh ,““, 
between media i and j [W m ’ K ‘1 refers to hot fluid 

L length of heat exchanger or length of * log-mean temperature difference 

channel in plate heat exchanger [m] correction factor (formula (I I)) 

m degree of polynomial (formula (5)) [dimensionless]. 

[dimensionless] 

n total number of channels Subscripts 

NTU number of heat transfer units for the C cold 

entire heat exchanger, km F/C h hot 

[dimensionless] i.j channels i. j 

NTUo number of transfer units in single in inlet 

channel, k * F,,/C, [dimensionless] 1 nodal points for approximating function 

P temperature effectiveness of cold fluid min minimum 

(formula (IO)) [dimensionless] max maximum 

f, T temperature [K] out outlet 

.X coordinate (length in the -x-direction) u. I’ integration limits 

z dimensionless coordinate, XI L. 0 single channel or one plate. 

method an approximate solution to 0, is assumed to 
be a polynomial of degree m : 

01 
0, = 1 c,,;‘. (5) 

,- 0 

The coefficients of this polynomial c,, are determined 
by (m+l) values of Ol_” for i= 1.2 ,..., n. 
,j = 0. I ,....m: 

@p’ = O,(zo) = f c,,zb 
11” 

@” = O,(z,) = i c,,z: 
I= 0 

@y) = @,(z,) = 2 c,,z;. (6) 
/=” 

It is assumed that 

o=z,<z, <zz<.**<z,,,=l. 

Substitution of the function (5) into the ith equation 
of (I) gives 

0,(-J -G;(q) = - f 
,= I 

i= I,2 ,..., n. (7) 

Integrating (7) for different combinations of chosen 

values of zo, z,, , z,,? as the integration limits z,, and 
;, we obtain m x n linear algebraic equations, 

The remaining n equations are found from the 

boundary conditions. Having (m+ 1) x n such equa- 
tions, it is possible to find all the coefficients c,, 
in (6) and, consequently, the temperatures 0:” (for 
i= I,2 ,..., n;j=O,l..._, m). 

As has been mentioned earlier, Settari and Venart’s 

method yields accurate results when the value of 
NTU, calculated for a single channel is not too large ; 
otherwise (NT/I, of the order of IO or more) the 
method leads to high errors. especially for small num- 
bers of channels. 

A modification of this method is thus presented 

using a linear combination of exponential functions 
for the temperatures in each channel instead of poly- 
nomial approximations. Such a function for a two- 

medium, plate heat exchanger has the following form : 

0, = c,,+~,,exp(a,-)+c,,exp(-cc,z) 

+c,1exp(cc?=)+(,4exp(-sc2=) 

fori= 1.2,...,n (8) 

where 

a I = kFoIG.t, +kFo/G 

~(2 = kFoIG,,n - kFoICc,o. 

The values of u, and d12 refer to a single channel. k is 
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%bk! 1, Comparison of results of calculations 0 and 4h for plate heat exchangers (Fig. 1 (c)) 
____-____-. 
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-- 

W/C,, kFo/G 
_-..- 

0.5 0.333 

2 I.333 

5 3.333 

0.5 0.286 

2 1.143 

5 2.857 

0.5 0.263 

2 1.053 

5 2.632 

Maximum error 
of@ 

Settari and 
Venart 
method 

0.167 
0.333 
0.667 
1.667 

0.667 
i ,333 
2.667 
6.667 

1.667 
3.333 
6.661 

16.667 

0.143 
0.286 
0.57i 
1.429 

0.571 
1.143 
2.286 
5.714 

1.429 
2.857 
5.714 

14.286 

0.132 
0.263 
0.526 
1.319 

0.526 
1.053 
2.105 
5.263 

1.316 
2.632 
5.263 

13.158 

0.5 
1 
2 
5 

0.5 
1 
2 
5 

0.5 
1 
2 
5 

0.5 
1 
2 
5 

0.5 
I 
2 
5 

0.5 
1 
2 
5 

0.5 
I 
2 
5 

0.5 
I 
2 
5 

0.5 
1 
2 
5 

- 

0.0001 
0.0002 
0.0013 
0.0138 

0.0000 
0.0000 
0.0000 
0.0011 

0.0054 
0.0154 
0.0647 
0.6531 

0.0103 
0.0148 
0.0484 
0.2159 

0.0746 
0.0926 
0.2280 

- 

0.~08 0.6459 -0.0570 
0.0014 1.5490 0.1885 
0.0080 4.6070 - 0.7744 
0.0526 17.5000 -3.5364 

0.0155 
0.0220 
0.0649 
0.1204 

7.6620 
13.3948 

0.0000 0.0000 
0.0002 0.~~ 
0.0010 0.0000 
0.0099 0.0008 

24.0853 
- 

0.0046 
0.1283 
0.0545 

0.0080 
0.0125 
0.0394 
0.1763 

0.0590 
0.0790 
0.1941 

0.0007 
0.0014 
0.0068 
0.0444 

0.5597 

0.5578 
1.3641 
4.2147 

17.3227 

0.0135 
0.022 1 
0.0601 
0.1198 

1.1824 
12.9173 
24.1662 

0.0000 0.0000 
0.0001 0.0000 
0.0007 0.0000 
0.0079 0.0006 

0.0040 
0.0112 
0.0472 
0.4965 

0.0063 0.0005 0.4961 
0.0102 0.001 I 1.2313 
0.0337 0.0052 3.9137 
0‘ 1549 0.0379 17.0475 

0.0503 
0.0678 
0.1745 

- 

0.0106 
0.0182 
0.0529 
0.1151 

- 

6.7856 
12.4359 
23.8950 

Exponential 
method 

- 

Error of I&, (%) 

Settari and Number 
Venart Exponential of 
method method channels 

0.0001 4 
0.0001 
0.0023 
0.0563 

- 1.4890 
-3.1633 
-6.1000 
-8.7558 

0.0000 8 
- 0.0003 
-0.0018 
-0.0474 

-0.0505 
-0.1747 
-0.7535 
-4.0249 

- 1.5028 
-3.3158 
-6.9171 

- 10.9508 

0.0001 20 
0.0001 

-0.0016 
-0.0400 

-0.0431 
-0.1542 
-0.6940 
-4.0972 

- 1.4223 
-3.2388 
-7.1258 

- 12.3391 
-~ 

-. the function exceeds the range of dimensionless temperature. 

the overalf heat transfer coefficient assumed constant 
in each channel as well as over the whole exchanger, 
F, represents the surface area of one plate, and C,.O 
and C,, are the heat capacities of the hot and cold 
medium in a single channel. 

Following Settari and Venart, the coefficients of 
equations (8) are calculated by substituting (8) into 
the ith equation of (7). Integrating (7) for four dif- 
ferent combinations of the values of 0 = z0 < z1 < 
12 < z3 < z4 = 1 as the integration limits we ob- 
tain 4n linear algebraic equations. In our equations 
Z” = 0, z, = :, z* = :, z) = :, zq = 1. The missing n 
equations are provided by the boundary conditions. 

Having 5n such equations we can find all unknown 
coefficients in (8) and hence all unknown tem- 
peratures in the exchanger. 

For kFo/Ch, = kFo/Cc,o, we use the function (9) 
instead of (8) 

Oi = ciO+c,, exp(ct~)+c~,exp(--ctz)fc,,z (9) 

where 

a = kF&,,+kF,IC,,~. 

The number of unknown coefficients is 4n. A total of 
3n equations may be obtained upon the substitution 
of (9) into (7). The remaining n equations are again 
found from the boundary conditions. 

The method proposed has been termed ‘exponen- 
tial’. The form of the function (8) or (9) results from a 
particular structure of the flow in the plate exchangers 
(both co-current and countercurrent flow). The 
coefficients 01,) a2 or c1 are the eigenvalues of a system 



1128 T. ZALESKI and K. KLEPACKA 

of differential equations. This system is the math- 
ematical model of an exchanger formed by two ad- 
jacent channels in a plate exchanger 

COMPARISON AND ANALYSIS OF THE 

RESULTS 

Calculations of the temperature distribution and 

thermal effectiveness have been carried out for a plate 
heat exchanger with a configuration of flow as in Fig. 
1. For such interconnections between the channels we 
may obtain exact analytical solutions (with eigen- 

values taken from the literature [4]). A ivide range of 
parameters (NTU,, = 0.0520 in a single channel, 
ratio of total heat capacity rates C,,jC, = 0.225. nurn- 
bcr of channels n = 4, 8, 16, 20, 24) has been inves- 

tigated. Temperature distribution and thermal effec- 
tiveness of the hot fluid are calculated analytically 
and by means of approximate methods (Settari and 

Venart’s and exponential). Maximum error and mean 
square error of the temperature distribution arc deter- 
mined for each variant. Also, the relative error con- 
cerning the thermal effectiveness is calculated. 

It has been found that for low values of NTU, in a 
single channel (0.0551) the two approximate methods 

arc sutficiently accurate. The error concerning thermal 
effectiveness was less than 0.6% for Settari and 
Venart; for the exponential method it did not exceed 
0.06%. However, for exchangers with high values of 
NTL’” and low number of channels, Setlari and Ven- 
art’s method leads to unacceptable errors above 25% 

d) 
FIG. I. Scheme of flow arrangements in a plate heat cx- 

changer. 

as concerns relative thermal effectiveness, compared 
with the analytical values. In several cases this method 
could not be used at all. For all these cases the error 
of the exponential method did not exceed 13%. The 
temperature distribution in individual channels of a 

plate heat exchanger is shown in Figs. 2 and 3. 
A variant has been chosen which leads to large 

discrepancies between the analytical solution and the 
two approximate solutions. Table 1 presents 
maximum errors in the temperature distribution and 
relative errors concerning the effectiveness of the hot 
medium, &I,,, for the exchanger shown in Fig. l(c). 

All errors arc calculated relative to the values found 
analytically for selected parameters. 

To test the approximate exponential method cal- 
culations of plate exchangers have been carried out 

for about 300 cases. Flow arrangements and inter- 
connections between channels were determined by : 

l number of passes of both fluids ; 
l number of channels in one pass; 

l boundary conditions. 

The results have been compared with those presented 

by Kandlikar and Shah [8] for various inter- 

connections between the channels (described by the 
number of passes) and for various configurations of 

the exchangers. A wide range of NTU, C,/C, and n 

has been studied. 
To calculate the temperature distribution, Kand- 

likar and Shah divided each channel into 100 
sections. With difference equations written for each 

section in individual channels they solved simul- 

taneously a system of equations using the Gauss- 
Seidel iterative finite difference method. The total 

number of iterations varied from I5 to 50 depending 

on the arrangement of passes and the total number of 
plates. The thermal effectiveness was obtained with 

an accuracy of about 0.0001. It may be noted that the 

exponential method presented in this paper requires 
only the solution of 5n linear algebraic equations 

(where II is the total number of channels). The results 

e 

10 

0.h 0.8 

Q7L 0.7 
02 0.4 0.6 0.8 7 z 0.2 0.4 0.6 0.8 1 z 

0) b) 

FIG. 2. Comparison of temperature protiles in plate exchanger (kF,,/C,,O = I .3333, kFO/C,.,~ = 6.6667. n = 4, 
Ilow as in iig. l(c)). (a) Channel I. (b) Channel 3. (--) Exact solution ; (--- -) Settari and Venart 

method ; (- x x -) exponential method. 
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I 

0.2 C!4 0.6 0.8 12 : 
4 

02 0.4 0.6 0.8 
b) 

FIG. 3. Comparison of temperature profiles in plate exchanger (kF,/C,,, = 1.3333, ItF,/&, = 6.6667, n = 4, 
flow as in Fig. 1 (c)). (a) Channel 2. (b) Channel 4. (---) Exact solution; (- - - -) Settari and Venart 

method ; (- x x --) exponential method. 

obtained using the exponential method agree sur- 
prisingly well with those of Kandlikar and Shah [8]. 

The outlet temperatures of the cold fluid in each 
variant were compared as 

(10) 

In all cases, the error was less than 0.0001 for the 
given range of thermal parameters. The log-mean tem- 
perature difference correction factors $ were also 
compared 

*=g. (11) 

In the above formula A@,, is the dimensionless mean 
temperature difference, and A@,, the dimensionless 
log-mean temperature difference. 

CONCLUSIONS 

A method of calculating the temperature dis- 
tribution and thermal efficiency in plate exchangers 
has been proposed, based on an approximation of the 
temperature of a medium in individual channels by 
means of linear exponential functions (equations (8) 
and (9)). The method leads to correct results over a 
wide range of thermal parameters and for various 
interconnections of the channels in the exchanger. 

An advantage of the exponential method lies in the 
fact that in order to obtain highly accurate results it 
is sufficient to use a personal computer of the IBM 
PC type. It also seems that the method proposed may 
be successfully applied to other types of multichannel, 
parallel-flow heat exchangers. 
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METHODE APPROCHEE POUR RESOUDRE LES EQUATIONS RELATIVES AUX 
ECHANGEURS THERMIQUES A PLAQUES 

R&&---Des solutions approchees de transfert thermique dans les Bchangeurs a plaques sont obtenues en 
utilisant des approximations exponentielles pour les temperatures dans chaque ecoulement. Des resultats 
numiriques obtenus par la mbthode prtsentie ont et&. compares avec les solutions analytiques exactes. 

Environ 300 cas ont et& analyses. 
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NAHERUNGSVERFAHREN ZUR L&SUNG DER GLEICHUNGEN FUR EINEN 
PLATTENWARMEAUSTAUSCHER 

Zusammenfaasung-Mit Hilfe eines exponentiellen Nlherungsverfahrens fur die Temperaturberechnung 
in beiden Massenstriimen eines Plattenwarmeaustauschers konnte eine Nlherungsliisung fur den 
Warmeaustausch gefunden werden. Die mit diesem Verfahren numerisch berechneten Ergebnisse werden 
mit exakten analytischen Liisungen verglichen. Ungefihr 300 verschiedene Falle werden dabei analysiert. 

lTPHBJIPDKEHHbI8 METOA PEBIEHHR YPABHEHMR AJDT TIJIACTAH~ATbIX 
TEL-IJIOOBMEHHHKOB 

Amio~plppc ricnonb30naniieM 3KcnonemuiaRbribrx IIpH6JUixeHHfi Ann rehfneparyp B noroKe nony- 
YeHbl npn6JrHmeHHbIe pe.meHHn 3aAan TellJlOnepeHoca B IlJIaCTHHVaTbIX TennOO6hteHHHKaX. npOWAeH0 

~aBHsZI”e ~HC,I‘ZHHbIX ~3,‘nbTaTOB C TOYHbIMH 2lHiUIWTH’iWKHMW ~IUeHHXMH. ~pOaHtlJlH3HpOBaHO 

o~ono 300 cnyqaes. 


